If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+6t+10=0
a = -4.9; b = 6; c = +10;
Δ = b2-4ac
Δ = 62-4·(-4.9)·10
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{58}}{2*-4.9}=\frac{-6-2\sqrt{58}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{58}}{2*-4.9}=\frac{-6+2\sqrt{58}}{-9.8} $
| 3(5x-2)=-39 | | 2x+62=5x-22 | | (x)=22 | | 5+3.50x=6+2.25x | | 5x-15+4x-3=180 | | -2/5+x/5=2 | | 2(b+7)=32 | | v+1.83=6.31 | | –9m=–10m−10 | | —(3-6x)=-(-6x+3) | | 9|7x−3|=−90 | | 9(7x−3)=−90 | | 1+3r=16 | | (-x+2)=5x+3x-11 | | -1/2r+6=3-2r | | 8x-12+7x+27=90 | | 5x+10+2x+10+110=360 | | 2(x+5)/3=16 | | 5x+10+2x+10+110=110 | | 2y2+8y-10=0 | | 2/3(6x-9)-2x=20 | | 12(x+5)=18x | | 2(3x+7)=x+10+5+4 | | 8=3m+5+4 | | 3y-8=5y+10y= | | x/12=2.7 | | H(x)=4/x-3 | | 2m189m3m=22 | | (3y+7)(9y+5)=180 | | (4x+3)=51 | | x+0.02=0.0018x= | | 7x+8=x+12+3x+20 |